skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Tommy Yunpu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 30, 2026
  2. Abstract Carbon–carbon bond cleavage reactions, adapted to deconstruct aliphatic hydrocarbon polymers and recover the intrinsic energy and carbon value in plastic waste, have typically been catalysed by metal nanoparticles or air-sensitive organometallics. Metal oxides that serve as supports for these catalysts are typically considered to be inert. Here we show that Earth-abundant, non-reducible zirconia catalyses the hydrogenolysis of polyolefins with activity rivalling that of precious metal nanoparticles. To harness this unusual reactivity, our catalytic architecture localizes ultrasmall amorphous zirconia nanoparticles between two fused platelets of mesoporous silica. Macromolecules translocate from bulk through radial mesopores to the highly active zirconia particles, where the chains undergo selective hydrogenolytic cleavage into a narrow, C 18 -centred distribution. Calculations indicated that C–H bond heterolysis across a Zr–O bond of a Zr(O) 2 adatom model for unsaturated surface sites gives a zirconium hydrocarbyl, which cleaves a C–C bond via β-alkyl elimination. 
    more » « less
  3. The molecular basis for the high cis -alkene selectivity over intermetallic PtSn for alkyne semi-hydrogenation is demonstrated. Unlike the universal assumption that the bimetallic surface is saturated with atomic hydrogen, molecular hydrogen has a higher barrier for dissociative adsorption on intermetallic PtSn due to the deficiency of Pt three-fold sites. The resulting molecular behavior of adsorbed hydrogen on intermetallic PtSn nanoparticles leads to pairwise-hydrogenation of three alkynes to the corresponding cis -alkenes, satisfying both high stereoselectivity and high chemoselectivity. 
    more » « less